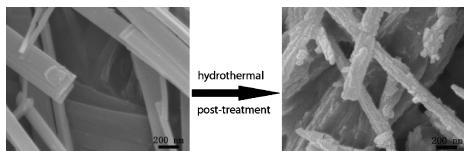

CONTENTS

Regular Articles

An electron diffraction and bond valence sum investigation of oxygen/fluorine ordering in $\text{Nb}_n\text{O}_{2n-1}\text{F}_{n+2}$, $n=3$

Frank J. Brink, Ray L. Withers, Stéphane Cordier and Marcel Poulain

Page 341



Shows typical [1-11] zone axis EDP for $\text{Nb}_3\text{O}_5\text{F}_5$. Note the strong essentially continuous, transverse polarized diffuse streaking along the $[\hbar 0l]^*$ and $[0kl]^*$ directions of reciprocal space. Such streaking is shown to be consistent with ordering of O/F along the **a** and **b** crystal directions.

Effects of hydrothermal post-treatment on microstructures and morphology of titanate nanoribbons

Huogen Yu, Jiaguo Yu, Bei Cheng and Minghua Zhou

Page 349

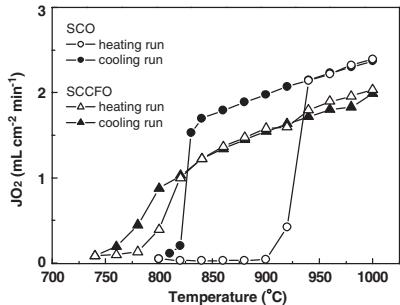


Hydrothermal post-treatment not only promoted the phase transformation from titanate to anatase TiO_2 , but also was beneficial to the removal of Na^+ ions remained in the titanate nanoribbons.

Neutron diffraction and electrochemical studies on LiIrSn_4

Puravankara Sreeraj, Hans-Dieter Wiemhöfer, Rolf-Dieter Hoffmann, Rolf Skowronek, Armin Kirsch and Rainer Pöttgen

Page 355

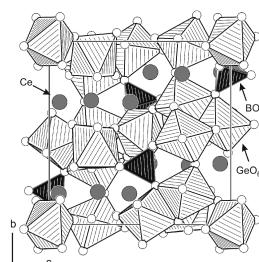

Crystal structure of tetragonal LiIrSn_4 , space group $I4/mcm$. Lithium, iridium, and tin atoms are drawn as grey, filled, and open circles, respectively. The two-dimensional $[\text{IrSn}_4]$ network, the square-prismatic lithium and the square antiprismatic iridium coordination are emphasised.

Regular Articles—Continued

Relationship between transport properties and phase transformations in mixed-conducting oxides

Z.Q. Deng, W.S. Yang, W. Liu and C.S. Chen

Page 362

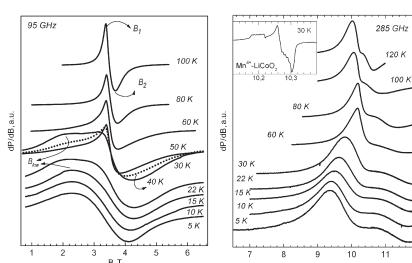


Temperature dependence of oxygen permeation rates through $\text{Sr}_{0.9}\text{Ca}_{0.1}\text{Co}_{0.89}\text{Fe}_{0.11}\text{O}_{3-\delta}$ (SCCFO) and $\text{SrCoO}_{3-\delta}$ (SCO) membranes with a thickness of 1.5 mm.

Multianvil high-pressure/high-temperature synthesis, crystal structure, and thermal behaviour of the rare-earth borogermanate $\text{Ce}_6(\text{BO}_4)_2\text{Ge}_9\text{O}_{22}$

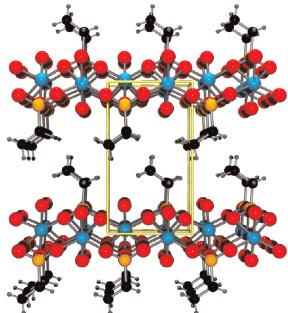
Gunter Heymann and Hubert Huppertz

Page 370

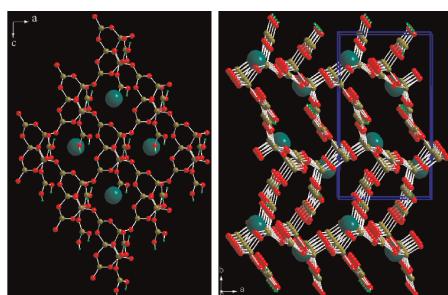


Synthesis of the new borogermanate $\text{Ce}_6(\text{BO}_4)_2\text{Ge}_9\text{O}_{22}$ via multianvil high-pressure techniques exhibiting BO_4 -tetrahedra, GeO_6 -octahedra, and oxygen atoms $\text{O}^{[3]}$ coordinated by one boron and two germanium atoms.

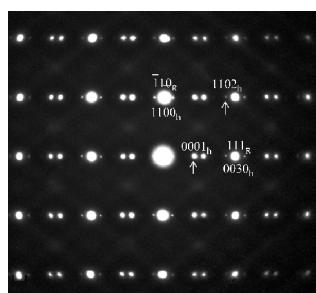
Mn^{4+} environment in layered $\text{Li}[\text{Mg}_{0.5-x}\text{Ni}_x\text{Mn}_{0.5}]\text{O}_2$ oxides monitored by EPR spectroscopy


R. Stoyanova, E. Zhecheva and S. Vassilev

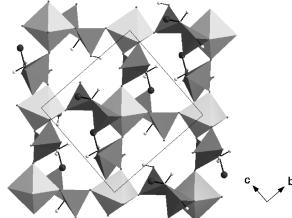
Page 378


High-frequency EPR spectra of $\text{LiNi}_{0.5}\text{Mn}_{0.5}\text{O}_2$.

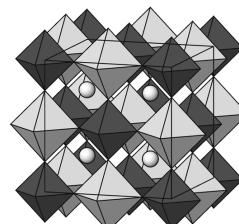
Layered hybrid organic–inorganic Co(II) alkylphosphonates. Synthesis, crystal structure and magnetism of the first two members of the series: $\text{Co}[(\text{CH}_3\text{PO}_3)(\text{H}_2\text{O})]$ and $\text{Co}[(\text{C}_2\text{H}_5\text{PO}_3)(\text{H}_2\text{O})]$
 Elvira M. Bauer, Carlo Bellitto, Marcello Colapietro, Said A. Ibrahim, Mohamed R. Mahmoud, Gustavo Portalone and Guido Righini
 Page 389


Ball and stick representation of the layered hybrid structure of $\text{Co}[(\text{C}_2\text{H}_5\text{PO}_3)(\text{H}_2\text{O})]$.

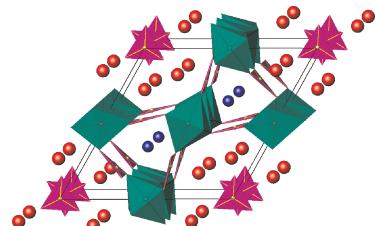
Synthesis and characterization of a new layered lead borate
 Guo-Ming Wang, Yan-Qiong Sun and Guo-Yu Yang
 Page 398


A new layered lead borate of $\text{Pb}[\text{B}_8\text{O}_{11}(\text{OH})_4]$ has been synthesized under hydrothermal conditions. It consists of layers of 9-membered boron rings enclosing Pb^{2+} cations. Adjacent borate layers are interconnected via ionic $\text{Pb}-\text{O}$ bonds and hydrogen bonding to form a 3D supramolecular network.

Old friends in a new light: “SnSb” revisited
 Lasse Norén, Ray L. Withers, Siegbert Schmid, Frank J. Brink and Valeska Ting
 Page 404


A $[1\bar{1}\bar{2}]_R \equiv [1\bar{1}0]_h$ zone axis EDP typical of incommensurately modulated “SnSb”. Three integer indexation with the subscript “R” is with respect to the rhombohedral setting unit cell while the $(3+1)$ integer $(hklm)$ indexation with the subscript “h” is with respect to the hexagonal setting unit cell.

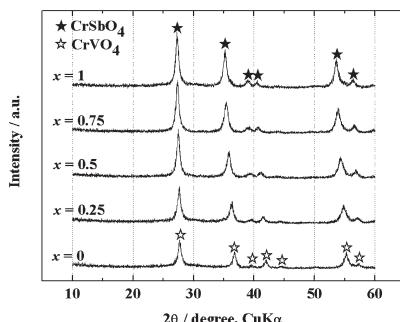
Metal phosphonates based on aminomethylenediphosphonate: Syntheses and characterization of $\text{Na}_4\text{Zn}\{\text{NH}_3\text{CH}(\text{PO}_3)_2\}_2 \cdot 4\text{H}_2\text{O}$, $\text{Ni}\{\text{NH}_3\text{CH}(\text{PO}_3\text{H})_2\}_2 \cdot x\text{H}_2\text{O}$ and $\text{NaNi}_2\{\text{NH}_3\text{CH}(\text{PO}_3)(\text{PO}_3\text{H}_{0.5})\}_2(\text{H}_2\text{O})_2 \cdot 2\text{H}_2\text{O}$
 Song-Song Bao, Tian-Wei Wang, Yi-Zhi Li and Li-Min Zheng
 Page 413


Based on aminomethylenediphosphonate, a zinc compound $\text{Na}_4\text{Zn}\{\text{NH}_3\text{CH}(\text{PO}_3)_2\}_2 \cdot 4\text{H}_2\text{O}$ (**1**) with 3D open-framework structure and two nickel compounds $\text{Ni}\{\text{NH}_3\text{CH}(\text{PO}_3\text{H})_2\}_2 \cdot x\text{H}_2\text{O}$ (**2**) and $\text{NaNi}_2\{\text{NH}_3\text{CH}(\text{PO}_3)(\text{PO}_3\text{H}_{0.5})\}_2(\text{H}_2\text{O})_2 \cdot 2\text{H}_2\text{O}$ (**3**) with square-grid layer and 3D open-framework structures, respectively, are reported. The magnetic studies of compounds **2** and **3** are also investigated.

Phase transitions in K_3AlF_6
 Artem M. Abakumov, Marta D. Rossell, Anastasiya M. Alekseeva, Sergey Yu. Vassiliev, Svetlana N. Mudrezova, Gustaaf Van Tendeloo and Evgeny V. Antipov
 Page 421

The monoclinic α - K_3AlF_6 phase is stable below 132°C ($a = 18.8588(2)\text{\AA}$, $b = 34.0278(2)\text{\AA}$, $c = 18.9231(1)\text{\AA}$, $\beta = 90.453(1)^\circ$, SG $I2/a$ or Ia). The β phase exists in very narrow temperature interval between 132 and 153°C . The orthorhombic γ polymorph is stable between 153°C and 306°C ($a = 36.1229(6)\text{\AA}$, $b = 17.1114(3)\text{\AA}$, $c = 12.0502(3)\text{\AA}$, SG $Fddd$). Above 306°C the cubic δ polymorph forms with $a = 8.5786(4)\text{\AA}$ and SG $Fm\bar{3}m$.

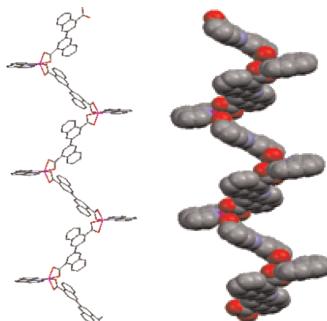
Structure of two new borates $\text{YCa}_3(\text{AlO})_3(\text{BO}_3)_4$ and $\text{YCa}_3(\text{GaO})_3(\text{BO}_3)_4$
 Yi Yu, Q.S. Wu and R.K. Li
 Page 429



$\text{YCa}_3(\text{MO})_3(\text{BO}_3)_4$ structure is constructed by MO_6 edge-shared chains interconnected by BO_3 groups with Y and Ca atoms occupying the trigonal and apatite-like tunnels.

Continued

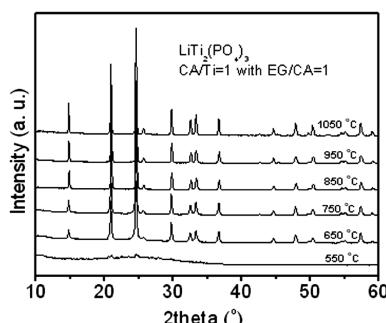
Mechanochemical synthesis of rutile-type CrMO_4 ($M=\text{V, Sb}$) and their solid solutions


Takatoshi Tojo, Qiwu Zhang and Fumio Saito
Page 433

The solid solutions, $\text{CrV}_{1-x}\text{Sb}_x\text{O}_4$, has been mechanochemically synthesized from the mixture of $\text{Cr}_2\text{O}_3 \cdot \text{H}_2\text{O}$, V_2O_5 and Sb_2O_5 .

Design and synthesis of four coordination polymers generated from 2,2'-biquinoline-4,4'-dicarboxylate and aromatic bidentate ligands

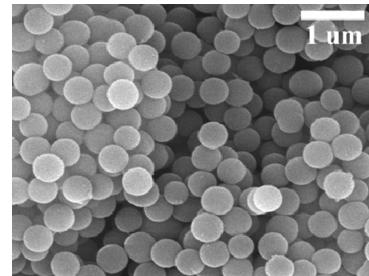
Junwei Ye, Ping Zhang, Kaiqi Ye, Hongyu Zhang, Shimei Jiang, Ling Ye, Guangdi Yang and Yue Wang
Page 438



One-dimensional coordination polymer chains.

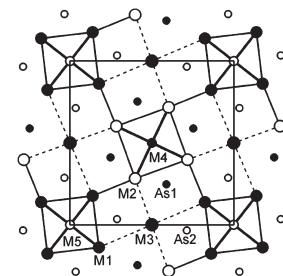
Synthesis of nanostructured $\text{LiTi}_2(\text{PO}_4)_3$ powder by a Pechini-type polymerizable complex method

C.R. Mariappan, C. Galven, M.-P. Crosnier-Lopez, F. Le Berre and O. Bohnke


Page 450

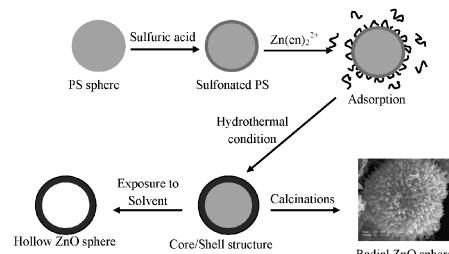
XRD patterns of the powder precursor with CA/Ti = 1 and EG/CA = 1, after heat-treatment at different temperatures for 2 h.

Preparation of uniform rhodamine B-doped $\text{SiO}_2/\text{TiO}_2$ composite microspheres


Fuyong Yang, Ying Chu, Lei Huo, Yang Yang, Yang Liu and Jinglin Liu
Page 457

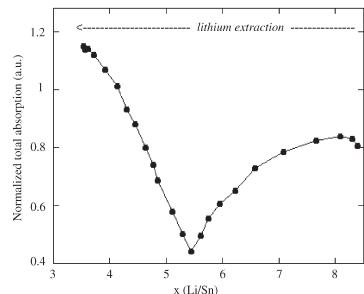
SEM image of RB-doped $\text{SiO}_2/\text{TiO}_2$ particles calcined at 800 °C.

Two new titanium molybdenum arsenides: Ti_2MoAs_2 and Ti_3MoAs_3 , ternary substitution variants of V_3As_2 and $\beta\text{-V}_4\text{As}_3$

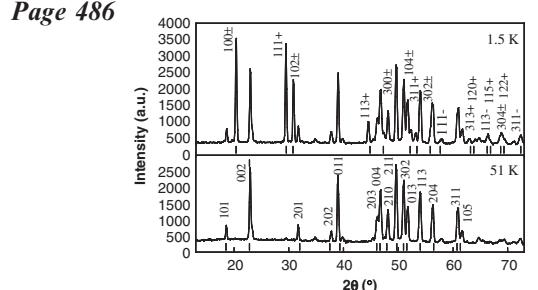

Abdeljalil Assoud, Shahab Derakhshan, Katja M. Kleinke and Holger Kleinke
Page 464

The two title compounds (shown here: Ti_2MoAs_2) simulate vanadium arsenides by Ti/Mo mixtures on the original V sites (M1-M5).

Polystyrene-ZnO core-shell microspheres and hollow ZnO structures synthesized with the sulfonated polystyrene templates

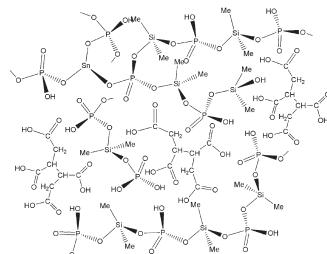

Yang Yang, Ying Chu, Yanping Zhang, Fuyong Yang and Jinglin Liu
Page 470

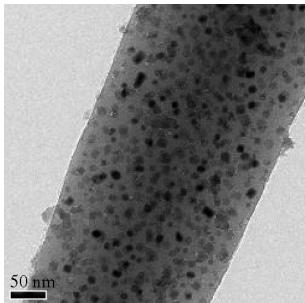
Schematic illustration for the fabrication of PS-ZnO core-shell microspheres and hollow ZnO structures.


The chemical changes occurring upon cycling of a SnO_2 negative electrode for lithium ion cell: In situ Mössbauer investigation

I. Sandu, T. Brousse, D.M. Schleich and M. Danot
Page 476

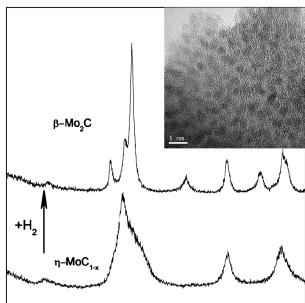
The first oxidation step of a $(\text{Li}_{4.4}\text{Sn} + 2\text{Li}_2\text{O})$ electrode could have been expected to consist in progressive lithium extraction from the $\text{Li}_{4.4}\text{Sn}$ alloy ($x=8.4$) for $\beta\text{-Sn}$ ($x=4$) to be formed. The variation of the ^{113}Sn Mössbauer absorption area vs the overall lithium content shows that it is not the case and that a new mechanism takes place when the alloy reaches the composition $\text{Li}_{1.4}\text{Sn}$ ($x=5.4$).


Magnetic study of two isotypic manganese chloro-sulfides: MnSbS_2Cl and the new compound MnBiS_2Cl
Charlotte Doussier, Gilles André, Philippe Léone, Etienne Janod and Yves Moëlo

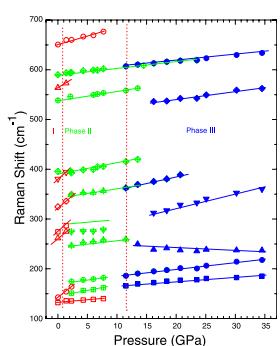

The crystal structure of a new Bi chloro-sulfide was resolved. The two isotypic compounds, MnSbS_2Cl and MnBiS_2Cl , were studied for their magnetic properties; magnetic susceptibility and specific heat measurements are presented. Neutron diffraction revealed the incommensurate modulation of the magnetic structure of the Sb compound.

Polycarboxylic acids as network modifiers for water durability improvement of inorganic-organic hybrid tin-silico-phosphate low-melting glasses

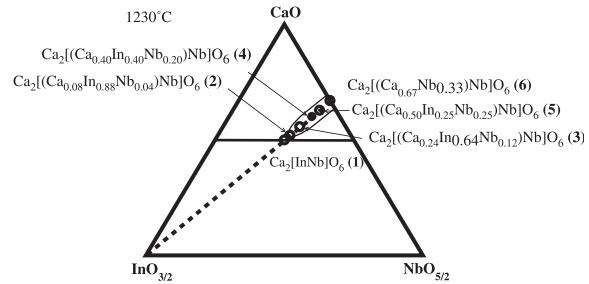
Bouzid Menaa, Megumi Mizuno, Masahide Takahashi, Yomei Tokuda and Toshinobu Yoko
Page 492



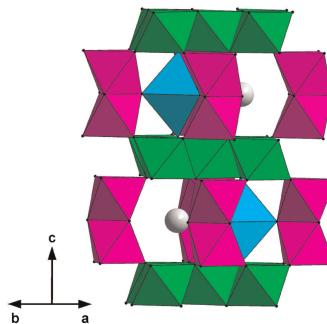
Microstructure and luminescence of transparent glass ceramic containing $\text{Er}^{3+}:\text{BaF}_2$ nano-crystals
 Daqin Chen, Yuansheng Wang, Yunlong Yu, En Ma and Lihua Zhou
 Page 532


Transparent glass ceramics containing BaF_2 nano-crystals doped with Er^{3+} were prepared by sol-gel route. The upconversion emissions emerged when the sample was heat-treated at 800 °C.

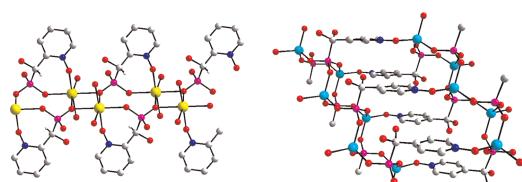
Synthesis and characterization of molybdenum carbides using propane as carbon source
 Xiao-Hui Wang, Hong-Ling Hao, Ming-Hui Zhang, Wei Li and Ke-Yi Tao
 Page 538


A post-treatment by hydrogen causes the phase transformation of molybdenum carbides in both the conventional TPRe method and a rapid heating method. The HRTEM image shows fairly uniform particles of $\beta\text{-Mo}_2\text{C}$ display an excellent dispersion on amorphous SiO_2 support.

Structural behavior of $\text{Sr}_2\text{Bi}_2\text{O}_5$ at high pressures
 F.X. Zhang, B. Manoun, S.K. Saxena and C.S. Zha
 Page 544

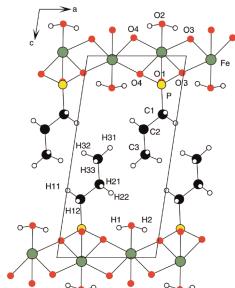

Pressure dependence of the frequency of the observed Raman modes for orthorhombic $\text{Bi}_2\text{Sr}_2\text{O}_5$ clearly indicates the phase transition.

A structure and phase analysis investigation of the “1:1” ordered $A_2\text{InNbO}_6$ perovskites ($A=\text{Ca}^{2+}, \text{Sr}^{2+}, \text{Ba}^{2+}$)
 V. Ting, Y. Liu, R.L. Withers, L. Norén, M. James and J.D. Fitz Gerald
 Page 551


Ternary phase diagram showing the compositions investigated along the quasi-binary join between the $\text{Ca}_2[\text{InNb}]O_6$ 1:1 material and the $\text{Ca}_2[(\text{Ca}_{0.67}\text{Nb}_{0.33})\text{Nb}]O_6$ perovskite structure.

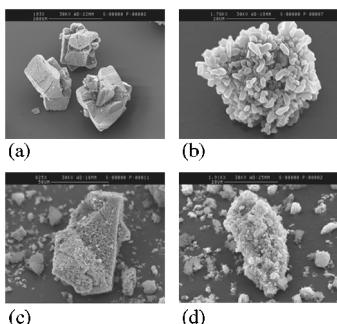
Synthesis, structure and physical properties of Ru ferrites: $\text{BaMRu}_5\text{O}_{11}$ ($M=\text{Li and Cu}$) and $\text{BaM}'_2\text{Ru}_4\text{O}_{11}$ ($M'=\text{Mn, Fe and Co}$)
 M.L. Foo, Q. Huang, J.W. Lynn, Wei-Li Lee, Tomasz Klimczuk, I.S. Hagemann, N.P. Ong and R.J. Cava
 Page 563

The representative crystal structure of *R*-type ferrite $\text{BaM}\text{Ru}_5\text{O}_{11}$ ($M=\text{Li and Cu}$) and $\text{BaM}'_2\text{Ru}_4\text{O}_{11}$ ($M'=\text{Mn, Fe and Co}$) with emphasis on the transition metal–oxygen polyhedra. Edge sharing octahedra are shaded green; face sharing octahedra are shaded magenta; isolated trigonal bipyramids are shaded cyan; barium atoms are shaded grey.

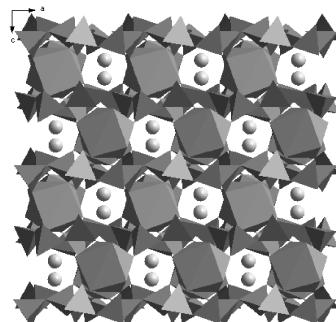

Metal phosphonates containing pyridyl N-oxide groups: Syntheses of $\text{Cd}\{(2\text{-C}_5\text{H}_4\text{NO})\text{CH}(\text{OH})\text{PO}_3\}(\text{H}_2\text{O})_2$ and $\text{Zn}\{(4\text{-C}_5\text{H}_4\text{NO})\text{CH}(\text{OH})\text{PO}_3\}$ with chain and layer structures
 Deng-Ke Cao, Yi-Zhi Li and Li-Min Zheng
 Page 573

This paper reports the syntheses and characterization of two polymeric phosphonate compounds incorporating pyridyl N-oxide groups namely $\text{Cd}\{(2\text{-C}_5\text{H}_4\text{NO})\text{CH}(\text{OH})\text{PO}_3\}(\text{H}_2\text{O})_2$ (1) with a chain structure and $\text{Zn}\{(4\text{-C}_5\text{H}_4\text{NO})\text{CH}(\text{OH})\text{PO}_3\}$ (2) with a layer structure.

Synthesis, structural determination and magnetic properties of layered hybrid organic-inorganic, iron (II) propylphosphonate, $\text{Fe}[(\text{CH}_3(\text{CH}_2)_2\text{PO}_3)(\text{H}_2\text{O})]$, and iron (II) octadecylphosphonate, $\text{Fe}[(\text{CH}_3(\text{CH}_2)_{17}\text{PO}_3)(\text{H}_2\text{O})]$
 Carlo Bellitto, Elvira M. Bauer, Philippe Léone,
 Alain Meerschaut, Catherine Guillot-Deudon
 and Guido Righini


Page 579

Unit-cell packing of $\text{Fe}[(\text{CH}_3(\text{CH}_2)_2\text{PO}_3)(\text{H}_2\text{O})]$ viewed along the *b*-axis.


Nanosized LiMn_2O_4 from mechanically activated solid-state synthesis

V. Massarotti, D. Capsoni and M. Bini
Page 590

SEM micrographs of (a) MnO , (b) Li_2CO_3 , (c) $\text{Li}_2\text{CO}_3/\text{MnO}$ manually grinded stoichiometric mixture and (d) the same mixture after 5 h mechanical grinding.

Structure, energy band, and optical properties of $\text{NaLa}(\text{PO}_3)_4$ crystal
 J. Zhu, W.-D. Cheng, D.-S. Wu, H. Zhang,
 Y.-J. Gong and H.-N. Tong
Page 597

LaO_8 polyhedra and $[(\text{PO}_3)_4]^{4-}$ chains share oxygen atoms to form a three-dimensional framework, delimiting intersecting tunnels in which the sodium ions are located.

NOTICE

The Keyword Index for Volume 179 will appear in the December 2006 issue as part of a cumulative index for the year 2006.